Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474417

RESUMO

Environmental pollution caused by plastic is a present problem. Polystyrene is a widely used packaging material (e.g., Styrofoam) that can be broken down into microplastics through abrasion. Once the plastic is released into the environment, it is dispersed by wind and atmospheric dust. In this study, we investigated the uptake of polystyrene particles into human cells using A549 cells as a model of the alveolar epithelial barrier, CaCo-2 cells as a model of the intestinal epithelial barrier, and THP-1 cells as a model of immune cells to simulate a possible uptake of microplastics by inhalation, oral uptake, and interaction with the cellular immune system, respectively. The uptake of fluorescence-labeled beads by the different cell types was investigated by confocal laser scanning microscopy in a semi-quantitative, concentration-dependent manner. Additionally, we used Raman spectroscopy as a complementary method for label-free qualitative detection and the visualization of polystyrene within cells. The uptake of polystyrene beads by all investigated cell types was detected, while the uptake behavior of professional phagocytes (THP-1) differed from that of adherent epithelial cells.


Assuntos
Plásticos , Poliestirenos , Humanos , Células CACO-2 , Microplásticos , Tamanho da Partícula , Microscopia de Fluorescência
2.
Int J Mol Sci ; 24(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37298718

RESUMO

Osteomyelitis is an infection of the bone that is often difficult to treat and causes a significant healthcare burden. Staphylococcus aureus is the most common pathogen causing osteomyelitis. Osteomyelitis mouse models have been established to gain further insights into the pathogenesis and host response. Here, we use an established S. aureus hematogenous osteomyelitis mouse model to investigate morphological tissue changes and bacterial localization in chronic osteomyelitis with a focus on the pelvis. X-ray imaging was performed to follow the disease progression. Six weeks post infection, when osteomyelitis had manifested itself with a macroscopically visible bone deformation in the pelvis, we used two orthogonal methods, namely fluorescence imaging and label-free Raman spectroscopy, to characterise tissue changes on a microscopic scale and to localise bacteria in different tissue regions. Hematoxylin and eosin as well as Gram staining were performed as a reference method. We could detect all signs of a chronically florid tissue infection with osseous and soft tissue changes as well as with different inflammatory infiltrate patterns. Large lesions dominated in the investigated tissue samples. Bacteria were found to form abscesses and were distributed in high numbers in the lesion, where they could occasionally also be detected intracellularly. In addition, bacteria were found in lower numbers in surrounding muscle tissue and even in lower numbers in trabecular bone tissue. The Raman spectroscopic imaging revealed a metabolic state of the bacteria with reduced activity in agreement with small cell variants found in other studies. In conclusion, we present novel optical methods to characterise bone infections, including inflammatory host tissue reactions and bacterial adaptation.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Osteomielite , Infecções Estafilocócicas , Camundongos , Animais , Staphylococcus aureus/fisiologia , Osteomielite/patologia , Modelos Animais de Doenças , Inflamação , Infecções Estafilocócicas/microbiologia , Infecção Persistente
3.
Analyst ; 148(9): 1978-1990, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37000525

RESUMO

T cells are considered to be critical drivers of intestinal inflammation in mice and people. The so called intra-epithelial lymphocyte (IEL) compartment largely consist of T cells. Interestingly, the specific regulation and contribution of IELs in the context of inflammatory bowel disease remains poorly understood, in part due to the lack of appropriate analysis tools. Powerful, label-free methods could ultimately provide access to this cell population and hence give valuable insight into IEL biology and even more to their disease-related functionalities. Raman spectroscopy has demonstrated over the last few years its potential for reliable cell characterization and differentiation, but its utility in regard to IEL exploration remains unknown. To address this question experimentally, we utilized a murine, T cell-driven experimental model system which is accepted to model human gut inflammation. Here, we repopulated the small intestinal IEL compartment (SI IELs) of Rag1-deficient mice endogenously lacking T cells by transferring naïve CD4+ T helper cells intraperitoneally. Using multivariate statistical analysis, high-throughput Raman spectroscopy managed to define a cell subpopulation ex vivo within the SI IEL pool of mice previously receiving T cells in vivo that displayed characteristic spectral features of lymphocytes. Raman data sets matched flow cytometry analyses with the latter identifying T cell receptor (TCR)αß+ CD4+ T cell population in SI IELs from T cell-transferred mice, but not from control mice, in an abundance comparable to the one detected by Raman spectroscopy. Hence, in this study, we provide experimental evidence for high-throughput Raman spectroscopy to be a novel, future tool to reliably identify and potentially further characterize the T cell pool of small intestinal IELs ex vivo.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Análise Espectral Raman , Camundongos , Humanos , Animais , Receptores de Antígenos de Linfócitos T gama-delta/análise , Linfócitos T , Intestino Delgado/química , Linfócitos/química , Receptores de Antígenos de Linfócitos T alfa-beta/análise , Mucosa Intestinal/química
4.
Front Cell Infect Microbiol ; 12: 930011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937698

RESUMO

Streptococcus pneumoniae, commonly referred to as pneumococci, can cause severe and invasive infections, which are major causes of communicable disease morbidity and mortality in Europe and globally. The differentiation of S. pneumoniae from other Streptococcus species, especially from other oral streptococci, has proved to be particularly difficult and tedious. In this work, we evaluate if Raman spectroscopy holds potential for a reliable differentiation of S. pneumoniae from other streptococci. Raman spectra of eight different S. pneumoniae strains and four other Streptococcus species (S. sanguinis, S. thermophilus, S. dysgalactiae, S. pyogenes) were recorded and their spectral features analyzed. Together with Raman spectra of 59 Streptococcus patient isolates, they were used to train and optimize binary classification models (PLS-DA). The effect of normalization on the model accuracy was compared, as one example for optimization potential for future modelling. Optimized models were used to identify S. pneumoniae from other streptococci in an independent, previously unknown data set of 28 patient isolates. For this small data set balanced accuracy of around 70% could be achieved. Improvement of the classification rate is expected with optimized model parameters and algorithms as well as with a larger spectral data base for training.


Assuntos
Infecções Estreptocócicas , Streptococcus pneumoniae , Humanos , Sorogrupo , Análise Espectral Raman , Infecções Estreptocócicas/diagnóstico , Streptococcus pyogenes
5.
Anal Chem ; 94(12): 4988-4996, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35302749

RESUMO

The life cycle of intracellular pathogens is often complex and can include different morphoforms. Treatment of intracellular infections and unperturbed studying of the pathogen inside the host cell are frequently challenging. Here, we present a Raman-based, label-free, non-invasive, and non-destructive method to localize, visualize, and even quantify intracellular bacteria in 3D within intact host cells in a Coxiella burnetii infection model. C. burnetii is a zoonotic obligate intracellular pathogen that causes infections in ruminant livestock and humans with an acute disease known as Q fever. Using statistical data analysis, no isolation is necessary to gain detailed information on the intracellular pathogen's metabolic state. High-quality false color image stacks with diffraction-limited spatial resolution enable a 3D spatially resolved single host cell analysis that shows excellent agreement with results from transmission electron microscopy. Quantitative analysis at different time points post infection allows to follow the infection cycle with the transition from the large cell variant (LCV) to the small cell variant (SCV) at around day 6 and a gradual change in the lipid composition during vacuole maturation. Spectral characteristics of intracellular LCV and SCV reveal a higher lipid content of the metabolically active LCV.


Assuntos
Coxiella burnetii , Coxiella burnetii/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Vacúolos
6.
PLoS One ; 8(12): e84461, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391959

RESUMO

BACKGROUND: Phytophagous insects have emerged successfully on the planet also because of the development of diverse and often astonishing defensive strategies against their enemies. The larvae of the mustard leaf beetle Phaedon cochleariae, for example, secrete deterrents from specialized defensive glands on their back. The secretion process involves ATP-binding cassette transporters. Therefore, sugar as one of the major energy sources to fuel the ATP synthesis for the cellular metabolism and transport processes, has to be present in the defensive glands. However, the role of sugar transporters for the production of defensive secretions was not addressed until now. RESULTS: To identify sugar transporters in P. cochleariae, a transcript catalogue was created by Illumina sequencing of cDNA libraries. A total of 68,667 transcripts were identified and 68 proteins were annotated as either members of the solute carrier 2 (SLC2) family or trehalose transporters. Phylogenetic analyses revealed an extension of the mammalian GLUT6/8 class in insects as well as one group of transporters exhibiting distinctive conserved motifs only present in the insect order Coleoptera. RNA-seq data of samples derived from the defensive glands revealed six transcripts encoding sugar transporters with more than 3,000 counts. Two of them are exclusively expressed in the glandular tissue. Reduction in secretions production was accomplished by silencing two of four selected transporters. RNA-seq experiments of transporter-silenced larvae showed the down-regulation of the silenced transporter but concurrently the up-regulation of other SLC2 transporters suggesting an adaptive system to maintain sugar homeostasis in the defensive glands. CONCLUSION: We provide the first comprehensive phylogenetic study of the SLC2 family in a phytophagous beetle species. RNAi and RNA-seq experiments underline the importance of SLC2 transporters in defensive glands to achieve a chemical defense for successful competitive interaction in natural ecosystems.


Assuntos
Besouros/genética , Proteínas de Transporte de Monossacarídeos/genética , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , Besouros/metabolismo , DNA Complementar/genética , Glândulas Exócrinas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Biblioteca Gênica , Larva/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...